

with.....

(A) FepA

(C) FepC

(D)

After getting charged by PMF, the TonB protein interacts

(B) FepB

ExbD

(4)		Which of the following enzyme kinetics equation is equivalent to the mathematical equation $y = ax + b$							
	(A)	A) Michaelis Menten equation							
	(B)	B) Briggs Haldane equation							
	(C)	(C) LIneweaver Burke equation							
	(D) (A) and (B)								
(5)	Which of the following enzyme is involved in glyoxylate bypass?								
	(A) Isocitrate dehydrogenase								
	(B)	(B) Isocitrate decarboxylase							
	(C)	C) Isocitrate kinase							
	(D)	Isocitrate lyase							
(6)	Oxy	ygen containing carotenoids are							
	(A)	Carotenes (B)	3) Xanthophylls						
	(C)	Phycobilins (D)	Anthocyanins						
(7)	Mak	ke suitable pair							
	1	Emerson effect	a	Photolysis of water					
	2	Hill reaction	b	C4 cycle					
	3	Calvin's cycle	c	C3 cycle					
	4	Hatch and Slack cycle	d	Photosystem-I & II					
	(A)	1-a, 2-b, 3-c, 4-d (B)	1-a, 2-c, 3-d 4-a						
	(C)	1-c, 2-d, 3-a, 4-b (D)	1-d, 2-a, 3-c, 4-b						
(8)		Free energy difference becomes standard free energy difference in which situation ?							
	(A) When [S] = [P]								

- (B) When Temperature is $0~\mathrm{K}$
- (C) When Entropy is increased
- (D) When K eq becomes 0.1

(9)	An example of the oxidative deamination is					
	(A)	glutamate =.hexan	oic a	eid + NH ₃		
	(B)	$\begin{array}{ll} aspartate & + & \alpha \text{-}k \\ oxaloacetate \end{array}$	etogl	utarate = glutamate +		
	(C)	glutamate = α -ket	toglut	arate + $\mathrm{NH_3}$		
	(D)	aspartate + hex Oxaloacetate	anoio	e acid = glutamate +		
(10)	Which statement best describes the oxidation of odd chain fatty acids?					
	(A)	Additional specific oxidative process	enzy	ymes are needed for the		
	(B)	One carbon is rem	oved	in one cycle		
	(C)	End product is pro	opion	yl co A		
	(D) Hydroxy fatty acids are produced					
(11)	The proper sequence of stages in glycolysis is					
	(A)	oxidation, cleavag		nd rearrangement, ATP		
	(B)	cleavage and rearrangement, glucose priming, ATP generation, oxidation				
	(C)	glucose priming, oxidation, cleavage and rearrangement, ATP generation				
	(D)	glucose priming, oxidation, ATP gen		age and rearrangement,		
(12)	Which of the following is true for an exergonic reaction?					
	(A)	$\Delta G = 0$	(B)	$\Delta G > 0$		
	(C)	$\Delta G < 0$	(D)	$\Delta G = \infty$		
(13)	In non-cyclic photophosphorylation, the electron emitted					
	by P_{680} is replaced by electron from					
	(A)	NADP	(B)	Water		
	(C)	Ferridoxin	(D)	Chlorophyll-a		
DCC-003	-0015	27]	3	[Contd	•••	

- (14) Which of the following condition favors purple membrane synthesis?
 - (A) Aerobic Condition and Light
 - (B) Anaerobic Condition and Light
 - (C) Anaerobic condition and Dark
 - (D) Aerobic condition and Dark
- (15) In signal transduction pathway enzyme adenylate cyclase is responsible for the production of :
 - (A) Cell surface receptor
 - (B) Primary messenger
 - (C) Secondary messenger
 - (D) Signalling molecule
- (16) During oxidative phosphorylation, the proton motive force that is generated by electron transport is used to:
 - (A) create a pore in the inner mitochondrial membrane.
 - (B) generate the substrates (ADP and Pi) for the ATP synthase.
 - (C) induce a conformational change in the ATP synthase.
 - (D) oxidize NADH to NAD+
- (17) Which precursor is used for synthesis of aromatic amino acids?
 - (A) 6-P-gluconate
- (B) Ribulose 5-P
- (C) Xylulose 5-P
- (D) Erythrose 4-P
- (18) Find the correct equation for finding ΔG .
 - (A) $\Delta G = \Delta H T \Delta S$
 - (B) $\Delta G = \Delta S T \Delta H$
 - (C) $\Delta G = \Delta S + T \Delta S$
 - (D) $\Delta G = \Delta T H \Delta S$

- (19) Which of the following enzyme is involved in ED pathway?
 - (A) 2-keto-3-deoxyphosphogluconate aldolase
 - (B) Glucose-6-P decarboxylase
 - (C) Transketolase
 - (D) 6-phoshpho gluconate dehydrogenase
- (20) Which of these cofactors, participates directly in most of the oxidation-reduction reactions in the fermentation of glucose to lactate?
 - (A) ATP
 - (B) FAD/FADH2
 - (C) Glyceraldehyde 3-phosphate
 - (D) NAD+/NADH

SECTION - II

2 (a) Write any three:

- 6
- (1) Discuss the importance of ATP in metabolism.
- (2) What is the role of Adenylate Cyclase in signal transduction?
- (3) Draw a labeled diagram of FoF1 ATPase.
- (4) What are ion channels and ion pumps?
- (5) Explain double reciprocal plot.
- (6) Explain the structure of Peptidoglycan.
- (b) Write any three:

9

- (1) Write a note on Glyoxylate cycle.
- (2) Explain iron transport mechanisms.
- (3) Explain Stickland reaction in brief.
- (4) What is free energy difference? How can it be measured?
- (5) Describe specialized metabolism of Nitrifying bacteria and Sulfur oxidizers.
- (6) What are special metabolic strategies of Hydrogen bacteria?

5

(c)	Write any two:							10
	(1)	Derive	Michaelis	Menten	equation	for	non	
	regulatory enzymes.							

- (2) Discuss in detail Phosphotransferase system.
- (3) Explain Kreb's cycle with regulation.
- (4) Write a note on bacterial photosynthetic pigments.
- (5) Explain the patterns of carbohydrate fermentation in lactic acid bacteria.

3 (a) Write any three:

6

- (1) Write examples of sulfur oxidizer and nitrifying bacteria.
- (2) Mention any four precursor metabolites with structure.
- (3) What are Siderophores?
- (4) Write the reversible oxidation reduction reaction of quinones.
- (5) What is CAM? Explain in brief.
- (6) Discuss the phosphorylation phase of glycolysis.

(b) Write any three:

9

- (1) Explain signal transduction cascade.
- (2) Write a note on Gm negative eubacteria.
- (3) Discuss the conformational changes in regulatory enzymes.
- (4) Explain C4 pathway in brief.
- (5) What is the use of mutants in studying metabolic pathways?
- (6) Explain HMP shunt.

(c) Write any two:

10

- (1) Describe pathway of Peptidoglycan biosynthesis.
- (2) Write a note on the concept of bioenergetics.
- (3) Explain various modes of ATP generation.
- (4) Describe the metabolism of any two chemo autotrophs.
- (5) Explain the major components of cell membrane in detail.

DCC-003-001527]